カジノレオログイン

<ウェブサイト名>

<現在の時刻>

出典: 標準

当サイトではサイトの利用状況を把握するためにGoogle Analyticsを利用しています。Google Analyticsは、クッキーを利用して利用者の情報を収集します。クッキーポリシーを確認 同意しない同意する本文へHomeNewsEventsThemesアクセス寄附EN検索 MenuHomeHome神戸大学について神戸大学について学長室発学長室発学長室発学長室発歴代学長大学概要大学概要大学概要使命、憲章、ビジョン沿革・歴史中期目標・中期計画中期財務計画施設に関する取組・計画大学評価について学長・役員等大学運営組織データと資料が語る神戸大学の今の姿神戸大学アウトライン神戸大学統合報告書神戸大学の各学部・大学院等の強み・特色大学施設の利用情報公開情報公開情報公開情報公開・個人情報保護総合案内所 (総務省)法人文書の公開神戸大学規則集個人情報保護制度教育情報の公表議事要録学長選考について医学部附属病院長候補者選考ガバナンス・コード新規採用・昇任教授中長期的に目指すべき理想の年代構成及び職位構成について中途採用比率の公表について男性労働者の育児休業等の取得割合の公表について学部等の設置に係る情報格付情報取組・計画取組・計画取組・計画ハラスメントの防止に向けて国立大学法人神戸大学の経営人材育成の基本方針学生の支援に関する基本方針国立大学法人神戸大学における反社会的勢力に対する基本方針公益通報危機管理 (危機管理マニュアル、安否確認システム、その他)「持続可能な開発目標(SDGs)」に対する取組環境・省エネへの取り組みICT戦略ダイバーシティの推進に関する取組障害を理由とする差別の解消の推進に関する職員対応要領安全保障輸出管理神戸大学における敷地内全面禁煙について令和6年能登半島地震への対応について調達情報広報活動広報活動広報活動神戸大学☆夢ラボ(ラジオ関西)刊行物学旗・学歌・ロゴマーク等公式キャラクター「神大うりぼー」動画・写真学生広報チームインターネットラジオ「神戸大学Radio!~等神大の私たち~」キャンパスツアー(2023)神戸大学の関連新聞記事神戸大学の公式SNSアカウント一覧プレスリリース・取材について取材等のお問い合わせ広報ガイドラインなど神戸大学 バーチャル背景学長定例記者会見神戸大学創立120周年記念 特設サイト入試・高大連携入試・高大連携学部入試学部入試学部入試神戸大学が求める学生像 (アドミッション・ポリシー) [学部]取得可能な学位入試の種類と入学定員 (募集人員)学部入試のお問い合わせ先入試問題及び出題の意図など入試結果お知らせ「志」特別選抜入試状況速報大学院入試大学院入試大学院入試神戸大学が求める学生像 (アドミッション・ポリシー) [大学院]入試概要: 博士課程前期課程・修士課程・専門職大学院入試概要: 博士課程後期課程・博士課程取得可能な学位大学院入試のお問い合わせ先その他の入試その他の入試その他の入試科目等履修生・聴講生の入試日程研究生の入試日程科目等履修生・聴講生・研究生のお問い合わせ先高大連携高大連携高大連携高大連携について公開授業出前授業神戸大学への留学神戸大学への留学神戸大学への留学神戸大学への留学案内神戸大学異分野共創型修士プログラム(KIMAP)教育教育教育の概要教育の概要教育の概要教育の概要学部教育学部専門教育大学院教育社会人教育ポリシーポリシーポリシーアドミッション・ポリシー(AP)学部アドミッション・ポリシー(AP)大学院ディプロマ・ポリシー(DP)学部・大学院カリキュラム・ポリシー(CP)学部・大学院シラバスシラバスシラバスシラバスについてシラバス外部公開資格・免許取得資格・免許取得資格・免許取得教職課程について資格取得状況授業振り返り・卒業時アンケート授業振り返り・卒業時アンケート授業振り返り・卒業時アンケート授業振り返り・卒業時アンケートアンケート関連資料全学教育プログラム全学教育プログラム全学教育プログラム数理・データサイエンス・AI教育プログラムICL国際共修プロジェクト(神戸大学)神戸グローバルチャレンジプログラム公開講座公開講座公開講座2024年度公開講座神戸大学からの海外留学神戸大学からの海外留学神戸大学からの海外留学GEMs(神戸大学グローバル教育管理システム)留学相談・海外留学フェア情報交換留学学外機関主催のプログラム神戸グローバルチャレンジプログラムSOLAC海外外国語研修危機管理奨学金奨学金(トビタテ!留学JAPAN 新・日本代表プログラム)学外のイベント情報研究・産官学連携研究・産官学連携研究と研究者を探す研究と研究者を探す研究と研究者を探す研究者紹介システム研究シーズ探索神戸大学リサーチハブ学術成果リポジトリ Kernel神戸大学オープンアクセス方針研究プロジェクト研究プロジェクト研究プロジェクト科学研究費助成事業異分野共創研究ユニット国際共同研究強化事業先端的異分野共創研究プロジェクト研究推進・支援研究推進・支援研究推進・支援学術研究推進機構動物実験について教育研究活性化支援経費神戸大学における外部資金からのPI等人件費支出制度特別研究員(雇用PD等)育成方針研究コンプライアンス研究コンプライアンス研究コンプライアンス学術研究に係る不正行為防止への取組み神戸大学の学術研究に係る行動規範神戸大学における研究倫理教育について研究費不正使用防止への取組み産官学連携産官学連携産官学連携産官学連携本部地域連携推進本部学生生活・学生支援学生生活・学生支援キャンパスライフキャンパスライフキャンパスライフ新入生の皆さんへキャンパスカレンダー令和6年度-入学予定者・保護者向け-学生生活オリエンテーション学生生活に関するマナーとルール入学料・授業料等について教材購入費学習・休息を行う環境の状況課外活動食堂売店等インクルーシブキャンパス&ヘルスケアセンター神戸大学生活協同組合 (大学生協)アクセス生涯メール神戸大学校友会神戸大学コミュニティネットワーク(KU-Net)ホームカミングデイ令和6年度学生生活案内学生支援学生支援学生支援障害学生支援学生寮学生相談アルバイトの紹介学生表彰制度保険制度給付金について年金経済支援経済支援経済支援奨学金制度授業料(入学料)の免除及び入学料の徴収猶予について進路・就職・インターンシップ進路・就職・インターンシップ進路・就職・インターンシップキャリアセンターインターンシップ企業の皆様へ各種証明書の発行各種証明書の発行各種証明書の発行証明書等の発行について (在学生向け)卒業証明書等の申請方法について(卒業生向け)神戸大学麻疹風疹登録制度感冒様症状者にかかる届出制度麻疹風疹登録証在学中の留学生の方へ在学中の留学生の方へ在学中の留学生の方へ新入留学生オリエンテーション在留手続きについて住まいについて奨学金について保険についてグローバル教育センター (旧国際教育総合センター)外国人留学生のためのガイドブック緊急・災害時等の対応マニュアル各種支援金卒業生卒業生卒業生卒業生交流会神戸大学人の集い神戸大学校友会・同窓会ホームカミングデイ海外同窓会国際交流国際交流海外協定校・海外拠点海外協定校・海外拠点海外協定校・海外拠点海外協定校海外拠点神戸大学からの海外留学神戸大学からの海外留学神戸大学からの海外留学GEMs(神戸大学グローバル教育管理システム)留学相談・海外留学フェア情報交換留学学外機関主催のプログラム神戸グローバルチャレンジプログラムSOLAC海外外国語研修危機管理奨学金奨学金(トビタテ!留学JAPAN 新・日本代表プログラム)学外のイベント情報神戸大学への留学神戸大学への留学神戸大学への留学神戸大学への留学案内神戸大学異分野共創型修士プログラム(KIMAP)全学教育プログラム全学教育プログラム全学教育プログラム数理・データサイエンス・AI教育プログラムICL国際共修プロジェクト(神戸大学)神戸グローバルチャレンジプログラム学部・大学院学部・大学院NewsNewsカテゴリーフィーチャーインタビュープロジェクト特集号プレスリリースSDGs目標 1: 貧困をなくそう目標 2: 飢餓をゼロに目標 3: すべての人に健康と福祉を目標 4: 質の高い教育をみんなに目標 5: ジェンダー平等を実現しよう目標 6: 安全な水とトイレを世界中に目標 7: エネルギーをみんなに。そしてクリーンに目標 8: 働きがいも経済成長も目標 9: 産業と技術革新の基盤を作ろう目標10: 人や国の不平等をなくそう目標11: 住み続けられるまちづくりを目標12: つくる責任、つかう責任目標13: 気候変動に具体的な対策を目標14: 海の豊かさを守ろう目標15: 陸の豊かさも守ろう目標16: 平和と公正をすべての人に目標17: パートナーシップで目標を達成しよう領域社会科学数物系科学化学工学系科学情報学生物系科学農学・環境学医歯薬学人文学EventsEvents形式講演会等公開講座説明会等展示大学行事ジャンル人文学社会科学数物系科学化学工学系科学情報学生物系科学農学・環境学医歯薬学開催場所六甲台第1キャンパス六甲台第2キャンパス鶴甲第1キャンパス楠キャンパス名谷キャンパス深江キャンパスその他神戸大学の施設学外オンライン対象入学希望者在学生教職員卒業生企業・地域対象者別受験生在学生・保護者卒業生企業・地域教職員 CloseNews TopカテゴリープレスリリースRead inEnglish2020.05.01太陽光、水、赤錆から水素ガスを高効率に製造 化学資源・エネルギーヘマタイト (赤鉄鉱)水素製造光触媒神戸大学分子フォトサイエンス研究センターの立川貴士准教授のグループは、赤錆の光触媒注1) 作用によって太陽光と水から水素を製造する際の効率を飛躍的に高める構造制御技術の開発に成功しました。次世代エネルギーとして注目されている水素を太陽光と水からつくることができる光触媒の実用化には、新材料探索に加え、光触媒自体のポテンシャルを最大化できる共通基盤技術の確立が必要です。今回、立川准教授らは、安全・安価・安定で、可視光を幅広く吸収できるヘマタイト (赤錆) 注2) のメソ結晶 (5nm程度の超微粒子の集合体) 注3) を透明電極基板に焼き付けるだけで、極めて高い導電性を有する光触媒電極を作製できることを見出しました。この光触媒電極では、光照射によって生成した電子と正孔が速やかに分離すると同時に、粒子表面に正孔が高密度に集まることで水分解のボトルネックである水の酸化反応が高効率に進行することがわかりました。今後は、開発した世界最高性能の光触媒電極をさらに高効率化するとともに、本技術を様々な材料や反応系に適用することで、太陽光水素製造や人工光合成注4) の実用化を産学連携で進めていきます。本研究成果は、令和2年4月30日 (現地時間) にドイツ化学誌「Angewandte Chemie International Edition」のオンライン版で公開され、表紙デザイン (inside cover) にも採用されました。ポイント10ナノメートル未満の光触媒超微粒子を配向を揃えて集積、焼結することで、粒子内部に酸素空孔注5) を高密度に形成できる。酸素空孔の付与によって光触媒電極の導電性が向上するとともに、粒子表面に大きな電位勾配が生じ、電子と正孔の分離が促進される。同時に多数の正孔が粒子表面に移動し、水を高効率に酸化分解することで、ヘマタイト系電極で世界最高の光水分解性能を達成した。本技術は、太陽光水素製造をはじめ、幅広い用途に向けた光触媒の開発に応用できる。研究の背景と経緯昨今の環境・エネルギー問題の高まりを受け、次世代エネルギーのひとつである水素が注目されています。この水素を太陽光と水からつくり出すことができる光触媒は夢の材料ですが、太陽光水素製造システムを社会実装するには、現状数%に留まっている太陽光エネルギー変換効率注6) を10%程度以上に向上させる必要があります。この目標を達成するためには、日本の強みである新材料探索に加え、光触媒自体のポテンシャルを最大化できる共通基盤技術の確立が必要です。これまで立川准教授らは、光触媒の微粒子 (数十ナノメートル) を精密に並べることで、電子と正孔の流れを制御する「メソ結晶技術」を開発してきました。最近では、本技術を赤錆として知られるヘマタイト (α-Fe2O3) に適用し、変換効率の大幅向上に成功しています。今回、ヘマタイトを超微粒子化することで、変換効率を理論限界値 (16%) の42%まで向上できることを見出しました。研究の内容メソ結晶技術光触媒反応における効率低下の主要因は、光照射によって生成した電子と正孔が基質分子 (本研究では水) と反応する前に再結合してしまうことです。立川准教授らは、光触媒の超微粒子を配向を揃えて三次元構造化した「メソ結晶」をソルボサーマル法注7) によって合成し、さらに、メソ結晶を透明電極基板に集積・焼結することで、導電性と水分解性能に優れたメソ結晶光触媒電極を開発しました (図1)。図1.メソ結晶光触媒電極の構造と光水分解特性(a) ヘマタイトメソ結晶 (約5nmの超微粒子の集合体) の電子顕微鏡像。(b) 電極からのガス生成。(c) 電流密度の印加電圧依存性。アノードには光触媒電極、カソードには白金電極を用いた。電位は可逆水素電極 (RHE) を基準とした。水の酸化電位は1.23Vである。メソ結晶を構成する微粒子のサイズを小さくすることで光水分解性能が大きく向上する。光触媒性能と原理チタンを含むヘマタイトメソ結晶を透明電極基板上に塗布し、700℃で加熱することで、メソ結晶光触媒電極を作製しました。メソ結晶表面に助触媒注8) を付着させ、アルカリ水溶液中で擬似太陽光を照射したところ、1.23Vの電圧印加の下、5.5mAcm-2の光電流密度で水分解反応が進行することがわかりました (図1) 。これは、光吸収特性とコストの両面において理想的な光触媒材料のひとつであるヘマタイトにおける世界最高性能です。また、ヘマタイトメソ結晶光触媒電極は、100時間に渡る繰り返し実験においても安定に動作することがわかりました。高効率化の鍵は、メソ結晶を構成する微粒子のサイズです。5nmまで小さくし、粒子同士の接触面積を増やすことで、焼結する際に生成する酸素空孔の量を飛躍的に増やすことができます。それにより、電子密度が飛躍的に増加し、メソ結晶の導電性が大幅に向上します (図2)。図2.ヘマタイトメソ結晶の光伝導度(a) フォトコンダクティブAFM注10) 測定の概略図。(b) 電流−電圧曲線。挿入図は測定したメソ結晶 (5nmの超微粒子からなるメソ結晶を焼結したもの) の形状像である。メソ結晶を構成する微粒子のサイズを小さくすることで導電性が大きく向上する。電子密度の増大は、メソ結晶表面に大きなバンド注9) の曲がりを形成します。それにより、初期の電荷分離が促進されるとともに、表面に正孔が集まりやすくなります。この効果は超微粒子からなるメソ結晶において最大化され、水分解のボトルネットとされる水の酸化反応が高効率に進行することがわかりました (図3)。図3.ヘマタイトメソ結晶における光水分解のメカニズム(a) メソ結晶内における酸素欠陥 (VO) の形成とバンド構造。1nm以下の空乏層が形成されることで電荷分離と水の酸化が促進される。CBは伝導帯、VBは価電子帯、e-は電子、h+は正孔を示している。(b) 電位勾配に沿って粒子表面に集まった複数の正孔が水を酸化することで活性化エネルギー (Ea) が大幅に低下し、変換効率が向上する。今後の展開今回、メソ結晶技術によって効率低下の主要因である再結合損失を大幅に低減することに加え、水の分解反応自体を飛躍的に促進できることがわかりました。本技術は、ヘマタイトだけでなく、他の金属酸化物へも適用できると期待されます。今後は、ヘマタイトメソ結晶光触媒電極の更なる高効率化と太陽光水素製造システムへの導入を産学協働で進めると同時に、人工光合成を含む様々な反応系への応用展開を図っていきます。用語解説注1) 光触媒光を照射することにより触媒作用を示す物質。光触媒を基板上に塗布し、電極化したものを光触媒電極といい、光電極とも呼ばれる。本研究では、水を酸化分解し、酸素を生成する反応に光触媒を用いている。注2) ヘマタイト (α-Fe2O3)酸化鉄のひとつ。ヘマタイトは安全・安価・安定 (pH > 3) であるとともに、広域の可視光 (約600nm以下) を吸収できる。太陽光エネルギー変換効率の理論上限値は約16% (光電流密度 13mAcm-2) である。注3) メソ結晶ナノ粒子が規則正しく三次元的に配列した多孔性の構造体。数百ナノメートルからマイクロメートルのサイズで、ナノ粒子間の空隙に由来する2~50ナノメートルの細孔を有する。注4) 人工光合成光合成を人為的に行う技術のこと。太陽光を利用して、地球上に豊富にある水を分解して水素ガスやその他の有用化合物を作ることができる。注5) 酸素空孔結晶格子中の酸素が欠損し、生じた空孔。ヘマタイトでは、酸素空孔が生成すると電気的中性条件を満足させるためにFe3+がFe2+に還元される。注6) 光エネルギー変換効率入射する光子の数に対して、反応に利用された光子の割合。注7) ソルボサーマル法高温、高圧の溶媒を用いて固体を合成する方法。注8) 助触媒光触媒と組み合わせることで触媒反応を促進する物質。本研究では、酸素生成を促進する助触媒として、リン酸コバルト (Co-Pi) を用いた。注9) バンド半導体中の電子と正孔が取り得る幅のあるエネルギー準位で、伝導帯と価電子帯がある。伝導帯内の電子密度が増加すると、表面に向かって上向きの湾曲が生じる。注10) フォトコンダクティブAFM原子間力顕微鏡 (AFM:Atomic Force Microscope) を用いて試料の電気的特性をナノスケールで分析する手法。本研究では405nmの波長のLED光を照射しながら個々のメソ結晶粒子上での電流測定を行った。特記事項本成果は、主に、科学技術振興機構 (JST) 研究成果展開事業 研究成果最適展開支援プログラム (A-STEP) 産学共同フェーズ (シーズ育成タイプFS) における研究課題「太陽光水素製造・利用システムの社会実装を可能とする高効率ヘマタイトメソ結晶光電極の開発」 (企業:株式会社カネカ、研究者:立川貴士) 、戦略的創造研究推進事業 個人型研究 (さきがけ) 「超空間制御と革新的機能創成」 (研究総括:黒田一幸 早稲田大学 理工学術院 教授) における研究課題「ナノ粒子の高次空間制御による高効率光エネルギー変換系の創製」 (研究者:立川貴士) によって得られました。論文情報タイトル“Ultra-Narrow Depletion Layers in Hematite Mesocrystal-Based Photoanode for Boosting Multihole Water Oxidation”(多正孔水酸化を増幅するヘマタイトメソ結晶光アノードの超薄空乏層)DOI10.1002/anie.202001919著者Zhujun Zhang, Hiroki Nagashima, Takashi Tachikawa掲載誌Angewandte Chemie International Edition研究者立川 貴士教授分子フォトサイエンス研究センター長嶋 宏樹分子フォトサイエンス研究センターSDGs分子フォトサイエンス研究センター理学研究科SHARE同じ研究者の記事Press releases2022.04.18工学系科学光エネルギーで膜ファウリングを解消Press releases2022.03.23化学赤錆の光触媒作用で水素と過酸化水素を同時に製造Press releases2021.10.19化学有機無機ペロブスカイトの光誘起構造変化を観測Press releases2020.10.21化学有機無機ペロブスカイトのイオン組成制御に成功同様のタグのある記事Press releases2019.10.23化学赤錆を用いて水と太陽光から水素を製造Press releases2020.11.04化学人工光合成光触媒がつくりだす酸素を高速検出Press releases2017.04.10化学水素生成量が1桁増加する光触媒の開発に成功Press releases2015.08.04化学光触媒を活性化するメカニズムの一端を解明ページの先頭へ〒657-8501 神戸市灘区六甲台町1-1受験生在学生・保護者卒業生企業・地域の方教職員お問い合わせアクセス採用情報公式SNS一覧キャンパスカレンダープライバシーポリシーサイトポリシーサイトマップ© Kobe University

ゲートオブオリンパス hadesスロット ウィンブルドン男子 ドイツカジノ
Copyright ©カジノレオログイン The Paper All rights reserved.